Economical sustainability of pinestraw raking in slash pine stands in the southeastern United States

Andres I. Susaeta a,⁎, Carlos A. Gonzalez-Benecke b, Douglas R. Carter c, Eric J. Jokela d, Timothy A. Martin e

⁎ Corresponding author. Tel.: +1 352 846 0877; fax: +1 352 846 1277.
E-mail addresses: asusaeta@ufl.edu (A.I. Susaeta), cgonzabe@ufl.edu (C.A. Gonzalez-Benecke), drcart@ufl.edu (D.R. Carter), ejokela@ufl.edu (E.J. Jokela), tamartin@ufl.edu (T.A. Martin).

1. Introduction

The use of freshly fallen pine needles (pinestraw) for landscape mulch has become a common economic activity in the southeastern United States (U.S.) due to its low cost, easy implementation and absence of competitors (Morris et al., 1992). Longleaf pine (Pinus palustris Mill.) and slash pine (Pinus elliottii Engelm. var. elliottii) are preferred species for pinestraw raking over loblolly pine (Pinus taeda L.), since their longer and thicker needles decompose more slowly than other species and they maintain desirable color characteristics (Casanova, 2007). Typically, pinestraw contractors lease forest stands for consecutive years to rake, bale and market pinestraw and, depending upon the contract terms, the landowner receives payments on a per hectare or per bale basis (Duryea, 1989; Morris et al., 1992). However, landowners are becoming more active in forestland management for sustainable pinestraw production as this market continues to grow (Patrick Minogue, School of Forest Resources and Conservation, University of Florida, February 13th, 2011, personal communication). Pinestraw has become a profitable enterprise in the southeastern U.S., providing a new source of employment and benefits rural economies. For example, in Florida the size value of this industry reached US$80 million in 2005 (Minogue et al., 2007), and in Georgia it generated around US$60 million annually to the state’s economy (Casanova, 2007).

The main objectives of this paper were to internalize the environmental benefits associated with pinestraw raking such as the abatement of catastrophic risks and disadvantages such as carbon and nutrient removals, and analyze the implications on forestland profitability. Previous studies have investigated the economic benefits of pinestraw raking on southern pines (Dickens et al., 2007a; Morris et al., 1992; Robertson, 1992; Stainback and Alavalapati, 2004). Pinestraw raking might increase the profitability of forest stands from $24–324 ha−1 year−1 (Haywood et al., 1998; Robertson, 1992). Other conservative estimates suggest annual payments ranging from $173 to 247 ha−1 year−1 (Minogue et al., 2007). However, these studies have not included the risk of wildfires – a crucial component of economic assessment of southern pines (Haight et al., 1995) – and empirically modeled the removal of carbon and nutrients.

Pine needles are considered the main source of surface fuels for carrying fires1 in southern pine forests (Marshall et al., 2008) and

© 2012 Elsevier B.V. All rights reserved.

0921-8099/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.ecolecon.2012.05.010

Please cite this article as: Susaeta, A.I., et al., Economical sustainability of pinestraw raking in slash pine stands in the southeastern United States, Ecol. Econ. (2012), doi:10.1016/j.ecolecon.2012.05.010
particularly near homes and structures in the wildland urban interface (Monroe et al., 2003). Reductions in live and dead fuel may decrease the spread and severity of wildfires (Waldrop et al., 2008), depending on the level of moisture of live fuels and the amount and spatial distribution of dead fuels (Marshall et al., 2008). Thus, removal of pine straw represents a management alternative for maintaining low levels of litter biomass in order to minimize the intensity and occurrence of wildfires (Clark and Saunders, 2009; Dodge, 1972; Haywood, 2009; Haywood et al., 1998; Manzello et al., 2006; McLeod et al., 1979; Pearson et al., 1995; Shang et al., 2004; Stephens and Ruth, 2005). Wildfire risk is typically modeled as a function of the forest stand age (Amacher et al., 2005a). The triangular distribution, a probability function that depends on the frequency of fire, is commonly used when the quantitative information about the relationship between the stand age and fire risk is scarce (Li et al., 1997).

Concerns about the negative impacts on carbon (C) dynamics and nutrient availability and long-term forest productivity have been associated with pine straw raking 1 or forest floor or litter removal (Lopez Zamora et al., 2001; Morris et al., 1992; Pritchett and Fisher, 1987). Sayer (2006) reviewed studies of litter removal in forests worldwide and concluded that long term litter removal severely decreased soil and foliar nutrient concentrations, causing a decline in tree growth. Experiences from Central Europe, where litter removal was a common activity during the 19th century until the 1950s, showed a reduction of 15% in foliar nitrogen concentrations (Nemec, 1929; Sayer, 2006). Furthermore, 50% reductions in growth rates of stands planted in previously raked sites compared to stands planted on unraided soils were found (Mitscherlich, 1955; Sayer, 2006; Wiedemann, 1935). Jandl et al. (2002) concluded that tree growth declined 50% between the 19th century and the first half of the 20th century due to litter raking in the European Alps.

Mixed impacts of litter removal have been found in U.S. studies. Jemison (1943) and Lunt (1951) reported a small detrimental effect on the rate of growth in diameter and stem volume in shortleaf pine (Pinus echinata Mill), and red pine (Pinus resinosa Ait.), respectively. McLeod et al. (1979) also observed reductions in growth during the first year after litter raking in longleaf pine. Ross et al. (1995) and Haywood et al. (1998) found no significant effects on tree growth in longleaf pine after two, 3-year intervals and a 5-year period pine straw raking interval, respectively, and Lopez Zamora et al. (2001) documented no impact on the growth of slash pine after 4 years of pine straw raking. Similarly, Powers et al. (2005), Sanchez et al. (2006), and Zepa et al. (2010) found no negative effect on loblolly pine growth 10 years after the complete removal of the forest floor at the time of planting. In spite of these inconclusive results, it is essential to account for the removal of carbon and nutrients due to pine straw raking to ensure sustainable forest productivity.

With the exception of the approach proposed by Gonzalez-Benecke et al. (in press), limited empirical models have been developed to quantify removals of C and nutrients due to pine straw raking activities. We coupled this biophysical model with a modified version of the Reed economic approach (1984) to assess the long term economic and C and nutrient removal effects of pine straw management in southern pine forests. Specifically, we explored and discussed the following: i) the effect of reduction of the probability of wildfires on the profitability of the forest stand and impact on C and nutrient balance due to extensive and intensive pine straw raking, ii) the impact on the profitability of the forest stand and C and nutrient balance due to pine straw raking through changes in site index and tree density, iii) the efficiency of different scenarios for pine straw raking in terms of the expected economic rents and C and nutrient removals, and iv) the sustainable silvicultural practices used for pine straw raking in southern pines.

2 Other concerns associated with pine straw raking are related to the negative impacts on physical properties of the soil (Patterson et al., 2010) and changes in biodiversity, particularly species richness and composition (Kelly and Wentworth, 2009; Kelly et al., 2000, 2002; Ober and DeGroote, 2011).

2. Material and Methods

2.1. Risk of Fire and Economic Model

Following Reed (1984), we assumed that the fire occurrence probability followed a non homogenous random Poisson process, with a distribution parameter \(\lambda \) dependant on stand age, i.e. \(\lambda = \lambda(X) \). The parameter represented the probability of occurrence of a fire in any given year. Traditionally, forest age dependent models of probability of fire have approached the ignition of a forest stand as an increasing function of the stand age \(^1\) (Amacher et al., 2005a, 2005c; Li and Apps, 1996; Li et al., 1997; Reed, 1984). Consider for example, a forest that had accumulated flammable materials over time such as dead wood, branches and debris. Thus, we assumed a rising fire arrival rate as forest stand ages, i.e. \(\lambda'(X) > 0 \).

Let \(X \) denote a random variable that represents the time between successive fire occurrences that damage the forest, i.e., the age of the stand at the time when fire occurs. \(X \) follows an exponential distribution with cumulative density function \((1 - e^{-mX})\), where \(m(X) = \int_{0}^{X} \lambda(q) \, dq \) and is increasing in \(X \), thus \(\frac{d\lambda}{dX} = \lambda(X) \). The probability that the stand is affected by a fire before reaching the optimal rotation age is \(\text{Prob}(X < T) = 1 - e^{-mT} \). At the optimal rotation age \(X = T \), the forest has not been affected by a fire and the probability that the optimal rotation age will be reached and the forest harvested without a fire is \(\text{Prob}(X = T) = 1 - \text{Prob}(X < T) = e^{-mT} \). The probability density function of \(X \) before reaching the optimal rotation age \(0 < X < T \) is given by \(\lambda(X)e^{-mX} \).

From a forest landowner's perspective the net revenues from a rotation \((Y)\) will depend on two states of the world: the stand reaches the optimal rotation age without a fire, and a destructive fire occurs before the optimal rotation age. In the first state of the world \((Y_1)\), the landowner will salvage a random portion \(k_s \) of the timber with mean \(\bar{k} \), and replant a new forest stand. Costs associated with the establishment and development of a forest stand are independent of the salvageable portion. Salvage logging \(^4\) is primarily driven by potential economic returns and reductions in fuel loads that decrease the probability of fire (Brown et al., 2003; Thompson and Spies, 2010). However, salvage logging might increase the fire hazard due to an increase in fine fuel materials (McVie and Ottmar, 2007) and also have negative impacts on stand structural complexity, ecosystem process and functions, population species and community composition (Lindenmayer and Noss, 2006).

Let's assume a forest stand produces traditional forest products (e.g. sawtimber, chip and saw, pulpwood) and pine straw bales. Let \(P_t \) and \(P_c \) denote the forest product price, and price of the pine straw bale, respectively. We also assume a fixed thinning before the optimal rotation age \(T \), with a net price of thinned wood \(P_{th} \) and volume of thinned wood \(V_t \). Let \(V(T) \) and \(V_{ch}(n) \) denote the merchantable volume of the forest at rotation age \(T \), and the number of pine straw bales harvested at age \(n \), respectively. Also let \(X_i \text{C}(T) \) and \(X_i \text{D}(T) \) represent the cumulative silvicultural costs associated with the

\(^1\) Age independent models of probability of fire (homogenous Poisson process) have been assumed by Amacher et al. (2005b, 2006), Englin et al. (2000), Reed (1984, 1987), and Susaeta et al. (2009) where an average fire occurrence rate ranges between 1% and 4%. Similar hazard rates in forests – between 0.5% and 2% – were also postulated by Runkle (1985).

\(^4\) Modeling of timber salvage has endogenously relied on characteristics of the forest. Amacher et al. (2005a, 2005b, 2005c) approached it as a function of planting density and level of fuel treatment, ranging the salvageable portion between 66% and 90%. Pasaulodos-Tato et al. (2009) determined it as an increasing function of the diameter at breast height of the tree. Empirically, Outcalt and Wade (2004) claimed dissimilar tree mortality rates of southern pines after wildfires in Florida: 3.5% and 43% of mortality rate in natural forest stands and plantations, respectively.
establishment and development of a forest stand, and intermediate silvicultural costs associated with the production of pinestraw, between time periods \(t_0 \) and \(T \), and \(t_0 \) and \(T \), respectively. The net current (undiscounted) economic rents, \(Y_1 \), for the first rotation in the first state of the world, when the forest stand reaches the optimal rotation age \((X = T) \) without being affected by a fire, are:

\[
Y_1 = PV(T) + (P_mV_t)_{t=T}^{(T-t)} + \sum_j^f \left(PV(n) \exp^{(t-J)} \right) \exp^{(t-J)} - \sum_c^f C(T) \exp^{(t-J)} - \sum_c^f C(t) \exp^{(t-J)},
\]

if \(X = T, n = 1, \ldots, T, j > 0, t_0 \geq 0, t_3 > 0 \) \hspace{1cm} \hspace{1cm} (1)

Eq. (1) says that a landowner will realize future economic rents due to tree harvesting at the optimal rotation age \((PV(T)) \), compounded thinning benefits \((P_mV_t)_{t=T}^{(T-t)} \) and cumulative returns due to pinestraw raking between time periods \(j \) and \(T \) \((\sum_j^f PV(n) \exp^{(t-J)}) \). In addition, a landowner has incurred compounded cumulative costs associated to establish and develop a forest stand \((\sum_c^f C(T) \exp^{(t-J)}) \), and production of pinestraw \((\sum_c^f C(t) \exp^{(t-J)}) \). The net current economic rents \(Y_2 \) for the first rotation in the second state of the world, the fire shortened rotation, are:

\[
Y_2 = \hat{K}_2PV(X) + P_mV_t \exp^{(X-x)} - \sum_x^f C(X) \exp^{(X-x)} - \sum_c^f C(t) \exp^{(X-x)}\exp^{(X-x)} - \sum_c^f C(t) \exp^{(X-x)}\exp^{(X-x)}
\]

if \(X < X \), \(x > 0, t_0 \geq 0, x_0 > 0 \) \hspace{1cm} \hspace{1cm} (2)

Eq. (2) says that following a fire at time period \(X \), a landowner realizes a proportion \(\hat{K}_2 \) of future timber benefits accruing due to tree harvesting \((PV(X)) \). If a fire occurs after time \(X \), he/she also realizes the compounded thinning benefits \((P_mV_t)_{t=T}^{(T-x)} \). Revenues from the fixed thinning at time \(X \) are ruled out if the fire occurs when \(X < x \). Under the assumption that trees exposed to wildfire experience 100% consumption of foliage (Hureau and North, 2009; Reinhardt and Crookston, 2003), the cumulative returns due to pinestraw raking between time periods \(j \) and \(X \) are set to zero. A key assumption of our model also is that there is a probability of fire that can affect the forests stand each year — given that \(X \) is the random time between successive fire occurrences, or also known as the age of the stand. Then, Eq. (2) is basically the representation of net economic revenues with a partial destruction of the stand, i.e., when timber salvage is allowed, due to random fire occurrence. The underlying assumption is that a fire event may happen every year. A landowner is annually economically compensated due to timber salvage but he/she is not able to salvage any proportion of needlefall production, thus, the returns due to pinestraw raking are not considered in Eq. (2). On the cost front, at the time of fire occurrence the landowner has already incurred silvicultural costs for development of the stand \((\sum_x^f C(X) \exp^{(X-x)}) \) and pinestraw raking \((\sum_x^f C(t) \exp^{(X-x)}) \). The latter is ruled out if the fire occurs when \(X < x \).

Following Reed (1984), the land expectation value \((LEV) \), assuming an infinite time horizon can be modeled as:

\[
LEV(T) = \frac{E\left[\exp^{-\delta Y} \right]}{1 - E\left[\exp^{-\delta X}\right]},
\]

where \(\delta \) is the discount rate. The expectation for the denominator term in Eq. (3) can be expressed as (Amacher et al., 2009):

\[
E\left[\exp^{-\delta X}\right] = \int_0^\delta \exp\left[-\delta x\exp\left[m(t)\right]\right] dx = \frac{\delta \exp\left[-\delta m(T) + \delta T\right]}{\delta + \delta T}
\]

In addition,

\[
E\left[\exp^{-\delta Y}\right] = \int_0^\delta \exp\left[-\delta \sum_j^f PV(n) \exp^{(t-J)}\right] dx
\]

The expected discounted value of the net economic returns for the first rotation of the stand \(fi \) under the risk of fire (the numerator term in Eq. (3)) is the sum of the value of the forest affected by a fire with a salvageable portion of the timber harvested before the optimal rotation age, and the value of the forest harvested at the optimal rotation age. It is important to mention that without the risk of fire, the right-hand side of Eq. (5) becomes the traditional net present value for the first rotation represented by the first state of world \((\exp^{-\delta Y}) \). Although we ruled out the possibility of salvaging any proportion of needlefall production for the partial destruction of the stand, this model does consider the cumulative returns due to pinestraw raking under the risk of fire. It is accounted for in the first term on the right-hand side of Eq. (5). At first glance, this can be counterintuitive since \(Y_1 \) represents the total benefits without the risk of catastrophic events. However, the risk of fire is included in the discounted rate that brings the future returns due to pinestraw raking (along with timber benefits) back to the present, having a negative impact on profitability. Using Eqs. (3) and (4) the \(LEV \) can be written as:

\[
LEV(T) = \frac{\lambda(T) + \delta}{\delta(\exp^{-\delta m(T)} - \exp^{-\delta m(T)}) + \lambda(T)} \left[\exp^{-\delta T} Y_1 \exp^{-m(T)} \right] dx
\]

Eq. (6) represents the traditional Faustmann formula without the risk of fire. From Eqs. (1), (2) and (5), the net present value of pinestraw raking \((NPVr) \) is given by the following expression:

\[
NPVr = \exp^{-\delta T} \left[\sum_j^f PV(n) \exp^{(t-J)} - \sum_c^f C(T) \exp^{(t-J)}\right] e^{-m(T)}
\]

On the right-hand side of Eq. (7), the terms \(\sum_j^f PV(n) \exp^{(t-J)} \) and \(\sum_c^f C(T) \exp^{(t-J)} \) are part of \(Y_1 \) and \(\sum_c^f C(t) \exp^{(x-x)} \) is part of \(Y_2 \). In Eqs. (5) and (6), we take the first derivative of Eq. (6) with respect to time \(T \) and set it equals to zero to find the expected optimal rotation age \(T^* \). We solve it by hand to obtain the following expression:

\[
PV(T) = \sum_j^f PV(n) \exp^{(t-J)} \sum_i^f C(T) \exp^{(t-J)} \sum_c^f C(t) \exp^{(t-J)}
\]

where \(\delta \) is the discount rate. The expectation for the denominator term in Eq. (3) can be expressed as (Amacher et al., 2009):

\[
E\left[\exp^{-\delta X}\right] = \int_0^\delta \exp\left[-\delta x\exp\left[m(t)\right]\right] dx = \frac{\delta \exp\left[-\delta m(T) + \delta T\right]}{\delta + \delta T}
\]

In addition,

\[
E\left[\exp^{-\delta Y}\right] = \int_0^\delta \exp\left[-\delta \sum_j^f PV(n) \exp^{(t-J)}\right] dx
\]

The expected discounted value of the net economic returns for the first rotation of the stand \(fi \) under the risk of fire (the numerator term in Eq. (3)) is the sum of the value of the forest affected by a fire with a salvageable portion of the timber harvested before the optimal rotation age, and the value of the forest harvested at the optimal rotation age. It is important to mention that without the risk of fire, the right-hand side of Eq. (5) becomes the traditional net present value for the first rotation represented by the first state of world \((\exp^{-\delta Y}) \). Although we ruled out the possibility of salvaging any proportion of needlefall production for the partial destruction of the stand, this model does consider the cumulative returns due to pinestraw raking under the risk of fire. It is accounted for in the first term on the right-hand side of Eq. (5). At first glance, this can be counterintuitive since \(Y_1 \) represents the total benefits without the risk of catastrophic events. However, the risk of fire is included in the discounted rate that brings the future returns due to pinestraw raking (along with timber benefits) back to the present, having a negative impact on profitability. Using Eqs. (3) and (4) the \(LEV \) can be written as:

\[
LEV(T) = \frac{\lambda(T) + \delta}{\delta(\exp^{-\delta m(T)} - \exp^{-\delta m(T)}) + \lambda(T)} \left[\exp^{-\delta T} Y_1 \exp^{-m(T)} \right] dx
\]

Eq. (6) represents the traditional Faustmann formula without the risk of fire. From Eqs. (1), (2) and (5), the net present value of pinestraw raking \((NPVr) \) is given by the following expression:

\[
NPVr = \exp^{-\delta T} \left[\sum_j^f PV(n) \exp^{(t-J)} - \sum_c^f C(T) \exp^{(t-J)}\right] e^{-m(T)}
\]

On the right-hand side of Eq. (7), the terms \(\sum_j^f PV(n) \exp^{(t-J)} \) and \(\sum_c^f C(T) \exp^{(t-J)} \) are part of \(Y_1 \) and \(\sum_c^f C(t) \exp^{(x-x)} \) is part of \(Y_2 \). In Eqs. (5) and (6), we take the first derivative of Eq. (6) with respect to time \(T \) and set it equals to zero to find the expected optimal rotation age \(T^* \). We solve it by hand to obtain the following expression:

\[
PV(T) = \sum_j^f PV(n) \exp^{(t-J)} \sum_i^f C(T) \exp^{(t-J)} \sum_c^f C(t) \exp^{(t-J)}
\]

Eq. (8) represents the rule of harvesting of a stand that produces traditional forest products along with pinestraw bales. The left-hand side is the marginal revenue value of waiting one extra year while the right-hand side is the marginal cost of waiting one more year (cost of holding the current forest stand plus the cost of holding the
land). If the marginal revenue of waiting is higher than the marginal cost of waiting, the landowner should wait one more year to harvest. In the contrary case the forest stand should be harvested.

3. Model Application to Slash Pine Stands

Slash pine is a fast growing species native to the southern U.S. that has been planted on more than 4.2 million ha, covering a wide range from eastern Texas to southern North Carolina to south-central Florida (Barnett and Sheffield, 2005). Around 79% of the planted slash pine occurs in Florida and Georgia (Barnett and Sheffield, 2005). We used whole-stand growth and yield models for slash pine as reported by Pienaar et al. (1996) and Yin et al. (1998), and modified to allow for multiple fertilizer additions (Bailey et al., 1999) and thinning (Bailey et al., 1980; Pienaar, 1995) treatments. Harvested roundwood (from thinnings or final harvests) was assigned to three main product classes depending on stem DBH and merchantable diameter; sawtimber (st), chip-and-saw (cns) and pulpwod (pw) using the model proposed by Pienaar et al. (1996) and Yin et al. (1998). To determine pinestraw production, we employed the model developed by Gonzalez-Benecke et al. (in press), in which yearly needlefall (NF) was estimated as a function of site index (SI, the height reached by the stand’s dominant and co-dominant trees at a reference age of 25 years) and stand density index (SDI, the number of trees of 25.4 cm diameter that the stand can support in one hectare for a given basal area, Reineke, 1933). Previous year SDI was correlated with current-year needlefall using a 3-parameter sigmoidal function (Table 1, see Gonzalez-Benecke et al. in press for further details). Yield per hectare (ha) of pinestraw was converted to bales per ha assuming 7.7 kilograms (kg) of pinestraw per bale and a raking efficiency conversion factor of 75% (David Dickens, Warnell School of Forestry and Natural Resources, University of Georgia, February 27th 2011, personal communication).

Using NF C and nutrient concentrations and the model it is possible to estimate C and nutrient removals from pinestraw raking. Net C removal due to pinestraw raking was determined after deducting, at rotation age, the biomass of needles in the forest floor with and without raking. Needle mass in the forest floor (Mg ha\(^{-1}\)) was determined as the sum of yearly needlefall inputs corrected for decay loss using a decay rate of 15% year\(^{-1}\) (Binkley, 2002; Gholz et al., 1985a, 1986, 1991; Gonzalez-Benecke et al., in press). The biomass of NF was transformed to C mass using an average C content of 50% (Clark et al., 1989; Smith et al., 2006). The average concentrations of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) in NF were obtained from published values reported in the peer-reviewed literature, averaging 4.14, 0.26, 0.62, 3.59 and 0.86 g kg\(^{-1}\), respectively (Burger, 1979; Dalla-Tea and Jokela, 1991; Gholz et al., 1985b; Manis, 1977).

Five unthinned and thinned scenarios for pinestraw raking were defined. The age of thinning was set at year 15 when applicable. Table 2 shows the different scenarios with their respective descriptions and silvicultural treatments. Chemical weed control cost of $136 ha\(^{-1}\) was assumed for raking activities (Camron Owens, Rayonier Inc, March 2nd 2011, personal communication). For the R1 and R2 scenarios, a clean-up cost of $173 ha\(^{-1}\) at year 17 was assumed prior to the resumption of raking (Dickens et al., 2007a). A fertilization cost of $222 ha\(^{-1}\) was assumed (Fox et al., 2007).

Common silvicultural management costs for all scenarios were based on Fox et al. (2007), Peter et al. (2007), and Smidt et al. (2005). Costs of $493 ha\(^{-1}\) and $913 ha\(^{-1}\) were assumed for site preparation (shear, rake, pile and bed) and aerial weed control prior to establishment, respectively. Planting and seedling costs were assumed to be $0.085 plant\(^{-1}\) and $0.05 seedling\(^{-1}\). Banded weed control and fertilization costs were assumed to be $93 ha\(^{-1}\) at year 1 and $222 ha\(^{-1}\), respectively, for all scenarios. Annual management costs were set at $20 ha\(^{-1}\) (Siry, 2002). A marking cost of $35 ha\(^{-1}\) was assumed for the thinned scenarios.

Average southeastern stumpage prices for st, cns, and pw were $31.2 m\(^{-3}\), $19.1 m\(^{-3}\), and $10.3 m\(^{-3}\), respectively (Timber Mart South, 2010). Price of ps was set to $0.5 bale\(^{-1}\). After thinning, the site may not have the same pinestraw yield because of less trees and increased understory competition that reduces the area to be raked (David Dickens, Warnell School of Forestry and Natural Resources, University of Georgia, February 27th 2011, personal communication). Thus, we assumed a 50% pine straw yield reduction after year 15 for the thinned scenarios. A discount rate of 4% was used in all economic analyses.

We considered a forest stand that faced a rising fire risk and any salvageable timber after a fire could be harvested, and replanted to start a new rotation. Following Amacher et al. (2005a, 2005c), and due to the lack of quantitative information about the relationship between stand age and probability of fire (Li et al., 1997), we linearly modeled the fire occurrence rate assuming that \(\lambda(X)\) followed a triangular distribution. Therefore:

\[
\lambda(X) = \frac{2(t_0)(X - t_0)}{(t_0 - t_a)(t_c - t_0)}
\]

Where \(t_a\) and \(t_b\) are the lower and upper limit of time \(t\), \(t_c\) represents the mode value and \(t_0\) is a scale parameter that represents a shift in the magnitude of \(\lambda(X)\). We assumed that fire frequency occurred every 50 years, thus \(t_0 = 0\) and \(t_a = t_c = 50\) and \(t_b = 0\) (no fire risk). Fire frequency in the U.S. South has typically ranged between 0 and 35 years (Schmidt et al., 2002). Although a fire frequency of 50 years may be considered a conservative estimate, lower fire frequencies – 50 to 100 years – are currently found for southern pines (Flannigan et al., 2000). We assumed that 70% of the stand could be salvaged after a fire, an estimate in agreement with those reported by Amacher et al. (2005a, 2005b, 2005c), Outcalt and Wade (2004), and Stainback and Alavalapati (2004).

At early stages of the stand, even when commercial pinestraw bale production starts, the annual probability of fire may be close to zero due to less amount of flammable material. However, even with a low probability of fire, the amount of pinestraw available after a fire and prior to subsequent fires may not be sufficient to meet the minimum number of bales per hectare to become a profitable enterprise. It is considered the quantity of 370 bales ha\(^{-1}\) as a break-even point for contractors to begin raking in slash pine stands (David Dickens, Warnell School of Forestry and Natural Resources, University of Georgia, February 27th 2011). Even if the fire had not consumed all foliage, some features of

Table 1

Summary of parameter estimates\(^{\text{a}}\) for the yearly needlefall model for slash pine in the southeastern United States.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\ln NF)</td>
<td>(0.80235 + 0.96529 Ln \ \beta_0)</td>
</tr>
<tr>
<td>(\beta_0)</td>
<td>(1.37070021 + 0.147580126 \ \text{SI})</td>
</tr>
<tr>
<td>(\beta_1)</td>
<td>(23.4519 + 2.13389 \ \text{SI})</td>
</tr>
<tr>
<td>(\beta_2)</td>
<td>(327.2346)</td>
</tr>
<tr>
<td>(\text{SI})</td>
<td>(1/\text{SI}/(1.85717)^{3.209})</td>
</tr>
</tbody>
</table>

\(^{\text{a}}\) NF is current year needlefall biomass (Mg ha\(^{-1}\) yr\(^{-1}\)); SI is previous year Reineke’s stand density index in metric units; \(\beta_0, \beta_1, \text{and } \beta_2\) are sigmoidal fit parameters; SI is stand site index (m).
the needles would be affected such as freshness, color and brightness and length degrading the quality of the pinestraw bale. Thus, pinestraw would not meet the minimum standards for landscape mulching. Finally it is not within the scope of our paper to determine the possibility that a portion of the needlefall may be commercially harvested in light of the different levels of wildfire risk. If that were the case, the implications on economic benefits would not be completely clear: there may be more available pinestraw bales due to the option of needlefall salvage, but some of them with inferior quality (low price per bale). Furthermore, more technical effort associated with higher operational costs may be demanded during pinestraw harvest.

We expected that the baseline and raking scenarios would have different probabilities for fire risk. However, effectiveness of fuel load reductions on wildfire behavior and fire damage is controversial. Shang et al. (2004) found that fuel treatments decreased both fire damage and potential fire risk. Amacher et al. (2005a, 2005b, 2005c) and Fernandes and Botelho (2003) suggested that fuel treatments reduced the severity of a fire without affecting the probability of fire occurrence. We modeled baseline scenarios with $t_{\text{b}} = 1$ and all raking scenarios with $t_{\text{b}} = 0$. For simulation purposes we allowed the probability of a fire to occur in a forest stand ($t_{\text{b}} = 1$). As noted earlier, we also quantified the removal of nutrients due to pinestraw raking. Presence of wildfires will burn fine fuels rapidly and alter nutrient availability in the soil, although base cations generally increase (Thiffault et al., 2008). Lavoie et al. (2010) found that total C and N pools and base cations were reduced in the forest floor although base cations increased in the mineral soil after one year. However, it is not within the scope of this paper to quantify the nutrient balance after a fire.

The main sources of variation of the integrated growth and yield model are site index (SI) and number of trees per hectare (TD). Thus, a sensitivity analysis was conducted to determine the effects of these two factors on the profitability of forestlands and C and nutrient removals for the extensively and intensively managed pinestraw raking scenarios.

Using the information regarding forest stand growth function, prices, silvicultural costs, and probability of fire risk described above, we used the Eq. (6) to calculate the LEV for each of the five unthinned and thinned scenarios for pinestraw raking. For example, for the R3u scenario, we simulated annually, with and without fire risk, expected present perpetual economic returns as a result of the rents due to tree harvesting, thinning at year 15 and cumulative pinestraw raking between years 8 and 15. Likewise, we calculated the expected present value of the cumulative silvicultural costs associated with the development of the forest stand (site preparation and weed control at year 0, planting and seedling costs at year 1, fertilization at years 5 and 15, and annual management cost) and pinestraw raking (weed control at years 7, 11 and 15, and fertilization at year 11). The LEV was computed from subtracting the present total costs from the total economic returns. The age associated with highest LEV was the optimal rotation age. Similarly, we calculated the LEV for the other scenarios but considering that the timing of the economic benefits or costs due to pinestraw raking may differ depending on the pinestraw raking regime (Table 2).

4. Results and Discussion

4.1. Profitability of Forestlands and Carbon and Nutrient Removals

4.1.1. Comparison between Intensively and Extensively Managed Raking Scenarios

The inclusion of pinestraw raking into traditional forest management regimes resulted in higher LEVs\(^{10}\) (Fig. 1c). The expected economic returns and nutrient removals depended on the risk of fire. The most profitable scenarios in terms of LEV were those in which the forest stands were most intensively managed for pinestraw raking without the effect of fire ($t_{\text{b}} = 0$, R2u and R2t). The LEVs for these scenarios were $\$6091 \text{ ha}^{-1}$ and $\$5146 \text{ ha}^{-1}$, respectively. The NPVrs for these scenarios were $\$1739 \text{ ha}^{-1}$ and $\$926 \text{ ha}^{-1}$. These scenarios, coupled with extended rotation ages – 24 and 26 years, respectively – had the highest nutrient removals. For example, C removals, after 19 and 17 rakings, were 12 and 11 Mg ha\(^{-1}\) for R2u and R2t, in the absence of risk of fire ($t_{\text{b}} = 0$). N removals were 233 and 182 kg ha\(^{-1}\) for R1 and R2; N = 701 kg ha\(^{-1}\), P = 275 kg ha\(^{-1}\) for R1 and R2; N = 478 kg ha\(^{-1}\), P = 211 kg ha\(^{-1}\).

In relative terms, higher C and N removals were found for the intensive management scenarios. For example, the LEV for the other scenarios but considering that the timing of the economic benefits or costs due to pinestraw raking may differ depending on the pinestraw raking regime (Table 2).

\(^{10}\) Full information with LEVs, NPVrs, rotation age, number of rakings and all nutrient removals can be found in Table A.1., Appendix A.
and 7%, respectively, as the probability of
might realize higher economic rents from intensive pinestraw raking.
The rotation age thus would be
removals increased by 23% and 15% (Fig. 1b). Thinned intensive rak-
ning, and shorter rotation ages.
A combination of less bale production and raking intensity after thin-
the unthinned intensive raking scenarios. This was expected due to
21% lower C and N removals, respectively, compared to those for
68% and 17%, respectively. Decreasing the risk of
on the land values and net returns from pinestraw raking played a
6.1% and 3% for the intensive unthinned and
sive raking scenarios, the change was negligible for C, while for N it
unthinned and thinned scenarios, respectively (Fig. 2d). Decreased
and, therefore, the NPVrs were reduced by 43% and 54% for the
unthinned and thinned scenarios, respectively. The nutrient removals
increased/decreased by 6.1% and 3% for the extensive unthinned and
thinned raking scenarios, respectively. The nutrient removals increased
by 8% and 4% for C and N, respectively, for the extensively
managed raking scenarios.
6.2.2. Effects of Changes in TD on Profitability of Forestlands and C and N Removals
Modifying TD had a minor impact on land values when the risk of
fire decreased. Lower land values for unthinned and thinned scenar-
6.1% and 5%, respectively13
(Fig. 2c). Dissimilar effects on land values were found for unthinned
and thinned scenarios for TD = 750 trees ha−1—2% higher and 11% lower
LEVs (Fig. 2c). The reduction in TD implied that the production
of pinestraw bales from ages 8 to 15 years did not reach a maximum
and, therefore, the NPVrs were reduced by 43% and 54% for the
unthinned and thinned scenarios, respectively (Fig. 2d). Decreased
TD implied a lower decrease in C (10%) and N (19%) removals. In-
creased TD had dissimilar effects on nutrient removal. For the inten-
sive raking scenarios, the change was negligible for C, while for N it
increased/decreased by 6.1% and 3% for the intensive unthinned and
thinned raking scenarios, respectively. The nutrient removals increased
by 8% and 4% for C and N, respectively, for the extensively
managed raking scenarios.
SI had a larger impact than TD on nutrient removals.14 When
SI = 26 m and TD = 750 trees ha−1, the nutrient removals were
200% and 111% greater for C and N than those for SI = 14 m and
TD = 750 trees ha−1. When SI = 14 m and TD = 2250 trees ha−1, C
and N removals were 13% and 18% greater, respectively, compared to those for SI = 14 and TD = 750 trees ha−1.
6.2.3. Efficiency of Pinestraw Raking: Nutrient Balance vs. Economic Revenues
The extensively managed raking scenarios were more efficient in
terms of nutrient removals relative to economic revenues. When all sim-
ulations under different SI and TD were pooled for each pinestraw raking
scenario, the relationship between economic revenues and C and N re-
movals was found. For the same NPVr (Fig. 3) and LEV (Fig. 4), removals of C and N were higher for the intensive scenarios (R1 and R2) compared to those of the extensive raking scenarios (R3, R4 and R5) (p < 0.001). With the intensive raking scenarios, for each $100 NPVr increment, the removals of C increased 1.0 and 1.3 Mg C ha−1; for unthinned and thinned stands, respectively. On the other hand, the extensive raking scenarios removed 0.74 Mg C ha−1 for each $100 NPVr increment. In the case of N, the average rates of change were 9.7 and 11.2 kg N ha−1 for
4.2.1. Effects of Changes in SI on Profitability of Forestlands and C and N Removals
Consistent with expectations, 146% and 137% higher LEVs, and 75%
and 94% higher NPVrs were obtained, respectively, for unthinned and
thinned scenarios without the risk of fire, when SI = 26 m (Fig. 2a and b). Decreased economic indicators—90% and 89% lower LEVs and 75% and 94% lower NPVrs—were found when SI = 14 m (Fig. 2a and b). In-
creased SI implied an increase in stand LAI (Albaugh et al., 1998; Jokela and Martin, 2000) and, therefore, needlefall and stand productivity (Gonzalez-Benecke et al., in press; Martin and Jokela, 2004). Concomi-
tant increases in removals of C and nutrients were also associated with pinestraw raking on higher quality sites. On average, the removals of C and N increased by 50% and 34%, respectively, for SI = 26 m com-
pared to those for SI = 20 m,12 without the risk of fire. On poorer sites, the losses were less—38% and 36%, respectively, for C and N.

Table 3

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Total C without raking (Mg ha−1)</th>
<th>Total C after raking</th>
<th>Total N without raking (kg ha−1)</th>
<th>Total N after raking</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1u</td>
<td>17.4</td>
<td>10.8</td>
<td>338.2</td>
<td>216.4</td>
</tr>
<tr>
<td>R2u</td>
<td>17.4</td>
<td>5.3</td>
<td>338.2</td>
<td>105.7</td>
</tr>
<tr>
<td>R3u</td>
<td>16.0</td>
<td>13.0</td>
<td>228.6</td>
<td>136.5</td>
</tr>
<tr>
<td>R4u</td>
<td>16.0</td>
<td>14.6</td>
<td>228.6</td>
<td>183.2</td>
</tr>
<tr>
<td>R5u</td>
<td>16.0</td>
<td>13.7</td>
<td>228.6</td>
<td>160.1</td>
</tr>
<tr>
<td>R1t</td>
<td>17.3</td>
<td>10.8</td>
<td>327.5</td>
<td>230.9</td>
</tr>
<tr>
<td>R2t</td>
<td>17.0</td>
<td>5.3</td>
<td>327.5</td>
<td>145.2</td>
</tr>
<tr>
<td>R3t</td>
<td>15.9</td>
<td>13.0</td>
<td>228.6</td>
<td>136.5</td>
</tr>
<tr>
<td>R4t</td>
<td>15.9</td>
<td>14.5</td>
<td>228.6</td>
<td>183.2</td>
</tr>
<tr>
<td>R5t</td>
<td>15.9</td>
<td>13.7</td>
<td>228.6</td>
<td>160.1</td>
</tr>
</tbody>
</table>

The NPVrs and nutrient removals remained constant for each extensively managed scenario regardless of thinning because pinestraw raking was imposed only between years 8 and 15. Differences in net C removal were found for these scenarios as it depended on the rotation age.

11 The NPVrs and nutrient removals remained constant for each extensively managed scenario regardless of thinning because pinestraw raking was imposed only between years 8 and 15. Differences in net C removal were found for these scenarios as it depended on the rotation age.

12 A complete table with removal of nutrients for all raking scenarios is available from authors upon request.

13 Although overstocked forest stands reached a maximum LAI at younger ages and stimulated higher needlefall production levels, negative impacts on profitability occurred because of higher planting costs and the production of lower market priced pulpwood in the densely spaced stands.

14 We also quantified the estimates for economic indicators and nutrient removals from the cross effects between SI and TD. For example, SI = 14 m with TD = 750 and 2250 trees ha−1; SI = 26 m with TD = 750 and 2250 trees ha−1. A complete table with LEVs, NPVrs, and removal of nutrients for all raking scenarios is available from authors upon request.

Please cite this article as: Susaeta, A.I., et al., Economical sustainability of pinestraw raking in slash pine stands in the southeastern United States, Ecol. Econ. (2012), doi:10.1016/j.ecolecon.2012.05.010
each $100 NPVr, for unthinned and thinned stands with the intensive raking scenarios, and 8.2 kg N ha⁻¹ for each $100 NPVr, for the extensive raking scenarios.

Pinestraw raking in thinned stands removed more C and N per unit change in NPVr than in unthinned stands (p<0.001) Thus, forest landowners might be inclined to rake less in light of the potential negative impacts of nutrient removal on long term site productivity. For the same revenues from raking, nutrient removals were higher for the thinned, intensive raking scenarios. Forest landowners would then have to rake more intensively and remove more C and N to equate to revenues in the unthinned raking scenarios (Fig. 3).

Slash pine plantations on sites with higher potential productivity were more efficient in C and nutrient removal per unit economic revenue increment. For any given level of C and nutrient removal, the LEVs were larger in stands with higher SI. For an average C removal of 5 Mg ha⁻¹, stands with SI=14, 20 and 26 m averaged a LEV of $780 ha⁻¹, $3740 ha⁻¹, and $4290 ha⁻¹, respectively (Fig. 4a). In the case of N, for an average pinestraw removal of 100 kg ha⁻¹, the LEV of stands with SI=14, 20 and 26 m averaged $1240 ha⁻¹, $2490 ha⁻¹, and $950 ha⁻¹, respectively (Fig. 4b).

From a land stewardship perspective, it may be more efficient to manage for pinestraw on higher SI stands, as financial returns are higher for similar levels of nutrient removal.

Different TDs would be selected for sites with different inherent site qualities to maximize profits per nutrient removed for the extensive raking scenarios (Fig. 5). On higher quality sites (SI = 26 m; Fig. 5b), landowners would maximize LEVs if planting density was increased. For a stand growing on a low quality site (SI = 14 m; Fig. 5a), landowners would be stimulated to plant less trees to realize higher economic revenues due to an increased proportion of sawtimber being produced compared to pulpwood.

4.3. Sustainable Practices for Pinestraw Raking

Important conclusions from these sensitivity analyses were that modifying site quality had a greater impact on land values compared to changes in the tree density when the risk of fire was reduced. Furthermore, planting on more productive sites would be more efficient in terms of sustainability, as land values tend to be higher and C and N removals per unit economic revenues were lower. Thus, forest landowners should focus their efforts on implementing management practices such as fertilization, weed control, and planting genetically improved seedlings – particularly fusiform rust seedlings – for increasing the overall productivity of the site (Jokela et al., 2010).

The application of fertilizer is a silvicultural option used to counteract the loss of nutrients due to pinestraw raking (Dickens et al., 2007a; Dickens et al., 2007b; Dickens et al., 2010; Minogue et al., 2007; Morris et al., 1992). On average, across all forest management scenarios analyzed (SI=20 m and TD=1500 trees ha⁻¹; Fig. 1) and for any single pinestraw harvest, the nutrient removals in harvested pinestraw bales were around 11.4 kg ha⁻¹ of N, 0.8 kg ha⁻¹ of P, 1.0 kg ha⁻¹ of K, 12.2 kg ha⁻¹ of Ca and 3.4 kg ha⁻¹ of Mg, respectively. As Morris et al. (1992) pointed out, even though nutrient removals in a single pinestraw harvest are small, they come to be large in stands repeatedly raked.

For example, for a stand with annual pinestraw raking from ages 8 to 15 years (i.e. scenario R3, SI=20 m, TD=1500, Fig. 1 and Table A.1), it would be necessary to apply 200 kg ha⁻¹ of urea, 38 kg ha⁻¹ of triple superphosphate, 13 kg ha⁻¹ of muriate of potash, 246 kg ha⁻¹ of lime, and 173 kg ha⁻¹ of kieserite, to offset the losses of 92.1 kg ha⁻¹ of P, 6.8 kg ha⁻¹ of K, 7.9 kg ha⁻¹ of Ca, 98.2 kg ha⁻¹ of Mg, and 27.7 kg Mg ha⁻¹ (Table A.1, Appendix A), respectively. In our study, additions of N and P due to pinestraw-associated fertilizations (223 kg ha⁻¹ of N and 64 kg ha⁻¹ of P per application) largely exceed the removals expected in all pinestraw management scenarios (see N and P removals on Fig.1). However, these N and P fertilization rates are typical operational recommendations used to enhance forest growth and leaf area production (Jokela et al., 2004).

5. Conclusions

Results from this study suggested that pinestraw raking was an economically attractive option for forest landowners that desired to diversify their management objectives and income sources from traditional products (e.g., pulpwood, sawtimber) with slash pine. Landowners were also financially better off when forestlands were intensively managed for pinestraw raking, especially without the risk of fire. However, intensively managed and raked stands had greater nutrient removals.

Fig. 1. LEV (c) and NPVr (d) and removals of C (a) and N (b) for unthinned and thinned raking scenarios at different levels of risk of fire.
Carbon and nutrient removals were also greater when raking was undertaken in stands having a higher site index because of more significant pinestraw yields in such stands. Although evidence in the U.S. is not conclusive, it is expected that C and nutrient removals could cause

Fig. 2. LEV (a,c), NPVr (b,d) with different SI/TD combinations for all raking scenarios in slash pine stands in the southeastern United States. SI and TD in m and trees ha\(^{-1}\), respectively. LEV and NPVr based on \(t_o = 0\). LEV and NPVr for \(t_o = 1\) available from authors upon request.

Fig. 3. Relationship between NPVr and removal of C (a) and N (b) for different pinestraw raking scenarios on slash pine stands in the southeastern United States.

Fig. 4. Relationship between LEV and removal of C (a) and N (b) due to pinestraw raking for unthinned slash pine stands with different SI. An exponential curve was fitted to all pinestraw raking scenarios in each SI group. Symbols representing pinestraw raking scenarios are the same described in Fig. 3.
decreases in forest stand productivity in the long term. On the other hand, it has been well established in the southeastern U.S. that many soils that support slash pine plantations have low inherent fertility and they are responsive to fertilizer additions (Fox et al., 2007; Jokela et al., 1989; Vogel and Jokela, 2011; Pritchett and Comerford, 1982). Thus, fertilization may be an option to compensate for future potential declines in forest productivity. Yet, ameliorative fertilizer additions would not necessarily compensate for possible changes in soil organic matter levels and the associated effects on other soil physical, chemical and microbiological properties.

Landowners might also be encouraged to extensively manage their forestlands for pinestraw raking due to similar economic revenues and shorter rotation ages to intensive pinestraw management. Slash pine stands managed extensively for pinestraw raking were generally more efficient in terms of nutrient removal with respect to economic returns. Planting sites with high potential productivity (SI) are recommended since landowners would be economically better off for similar levels of nutrient removals.

Decisions regarding planting density would depend on the quality of the site. Forest landowners should plant less/more trees for high/low productive sites. Fertilization and weed control treatments, coupled with the use of genetically improved seedling stock, would be needed to increase the overall productivity and yield of pinestraw from the site.

Volatility in prices and different people’s perceptions are also factors that might negatively affect pinestraw markets. With a growing interest in diversifying the sustainable supply of forest products, future research should focus on pinestraw removal experiments to quantify the effects on long-term site productivity. Thus, growth and yield of a forest stand could be stochastically modeled as a function of endogenous risk associated with potential reductions in stand productivity. Another option might be to develop a probability function for forest stand productivity under different scenarios of pinestraw raking. Regardless of the approach, a potential decline in forest productivity may lead to a decrease in the estimates of profitability of forestlands. This information would be essential to determine sustainable forest management strategies to mitigate any

Appendix A

Table A.1
LEV and NPVr, rotation age (R), number of rakings (N), and all nutrient removals at different levels of risk for all scenarios (Sc).

<table>
<thead>
<tr>
<th>Sc</th>
<th>t0</th>
<th>LEV US$ha⁻¹</th>
<th>R years</th>
<th>N</th>
<th>NPVr US$ha⁻¹</th>
<th>C Mg ha⁻¹</th>
<th>N kg ha⁻¹</th>
<th>P</th>
<th>K</th>
<th>Ca</th>
<th>Mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>1</td>
<td>975</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>R1</td>
<td>0</td>
<td>4386</td>
<td>26</td>
<td>10</td>
<td>637</td>
<td>6.5</td>
<td>121.7</td>
<td>8.9</td>
<td>10.5</td>
<td>129.8</td>
<td>36.6</td>
</tr>
<tr>
<td>R1</td>
<td>1</td>
<td>2340</td>
<td>22</td>
<td>8</td>
<td>367</td>
<td>6.2</td>
<td>96.8</td>
<td>7.1</td>
<td>8.3</td>
<td>103.2</td>
<td>29.1</td>
</tr>
<tr>
<td>R2</td>
<td>0</td>
<td>6091</td>
<td>26</td>
<td>19</td>
<td>1739</td>
<td>12.0</td>
<td>232.5</td>
<td>17.1</td>
<td>20.0</td>
<td>247.8</td>
<td>69.9</td>
</tr>
<tr>
<td>R2</td>
<td>1</td>
<td>3902</td>
<td>23</td>
<td>16</td>
<td>1200</td>
<td>11.6</td>
<td>195.1</td>
<td>14.3</td>
<td>16.7</td>
<td>208.0</td>
<td>58.6</td>
</tr>
</tbody>
</table>

Fig. 5. Relationship between LEV and removal of C due to pinestraw raking before age 15 (R3, R4 and R5) in slash pine stands with different planting densities and thinning regimes, for stands with SI = 14 m (a) and SI = 26 m (b). An exponential curve was fitted to all pinestraw raking scenarios in each planting density and thinning regime group.

Please cite this article as: Susaeta, A.I., et al., Economical sustainability of pinestraw raking in slash pine stands in the southeastern United States, Ecol. Econ. (2012), doi:10.1016/j.ecolecon.2012.05.010
Table A.1 (continued)

<table>
<thead>
<tr>
<th>Sc</th>
<th>t</th>
<th>LEV US$ha⁻¹</th>
<th>R, years</th>
<th>N, 1000 trees/ha</th>
<th>NNPV, US$ha⁻¹</th>
<th>C, Mg ha⁻¹</th>
<th>N, kg ha⁻¹</th>
<th>P, Mg</th>
<th>K, Mg</th>
<th>Ca, Mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>R3a</td>
<td>0</td>
<td>4283</td>
<td>22</td>
<td>8</td>
<td>715</td>
<td>2.9</td>
<td>92.1</td>
<td>6.8</td>
<td>7.9</td>
<td>98.2</td>
</tr>
<tr>
<td>R3b</td>
<td>1</td>
<td>2803</td>
<td>19</td>
<td>8</td>
<td>635</td>
<td>46.6</td>
<td>92.1</td>
<td>6.8</td>
<td>7.9</td>
<td>98.2</td>
</tr>
<tr>
<td>R4a</td>
<td>0</td>
<td>3328</td>
<td>22</td>
<td>4</td>
<td>156</td>
<td>1.3</td>
<td>45.4</td>
<td>3.3</td>
<td>3.9</td>
<td>48.4</td>
</tr>
<tr>
<td>R4b</td>
<td>1</td>
<td>1753</td>
<td>20</td>
<td>4</td>
<td>134</td>
<td>1.8</td>
<td>45.4</td>
<td>3.3</td>
<td>3.9</td>
<td>48.4</td>
</tr>
<tr>
<td>R5a</td>
<td>0</td>
<td>3792</td>
<td>22</td>
<td>6</td>
<td>427</td>
<td>2.2</td>
<td>68.5</td>
<td>5.0</td>
<td>5.9</td>
<td>73.0</td>
</tr>
<tr>
<td>R5b</td>
<td>1</td>
<td>2254</td>
<td>19</td>
<td>6</td>
<td>377</td>
<td>3.5</td>
<td>68.5</td>
<td>5.0</td>
<td>5.9</td>
<td>73.0</td>
</tr>
<tr>
<td>NRt</td>
<td>0</td>
<td>1224</td>
<td>23</td>
<td>5</td>
<td>612</td>
<td>2.9</td>
<td>92.1</td>
<td>6.8</td>
<td>7.9</td>
<td>98.2</td>
</tr>
<tr>
<td>R1t</td>
<td>0</td>
<td>3954</td>
<td>24</td>
<td>8</td>
<td>191</td>
<td>5.8</td>
<td>96.6</td>
<td>7.1</td>
<td>8.3</td>
<td>103.0</td>
</tr>
<tr>
<td>R1b</td>
<td>1</td>
<td>2091</td>
<td>22</td>
<td>8</td>
<td>123</td>
<td>5.5</td>
<td>84.2</td>
<td>6.2</td>
<td>7.2</td>
<td>89.7</td>
</tr>
<tr>
<td>R2t</td>
<td>0</td>
<td>5146</td>
<td>24</td>
<td>17</td>
<td>926</td>
<td>10.5</td>
<td>182.3</td>
<td>13.4</td>
<td>15.6</td>
<td>194.3</td>
</tr>
<tr>
<td>R2b</td>
<td>1</td>
<td>3282</td>
<td>22</td>
<td>15</td>
<td>778</td>
<td>9.8</td>
<td>157.4</td>
<td>11.6</td>
<td>13.5</td>
<td>167.8</td>
</tr>
<tr>
<td>R3t</td>
<td>0</td>
<td>4501</td>
<td>22</td>
<td>8</td>
<td>635</td>
<td>2.9</td>
<td>92.1</td>
<td>6.8</td>
<td>7.9</td>
<td>98.2</td>
</tr>
<tr>
<td>R3b</td>
<td>1</td>
<td>2994</td>
<td>20</td>
<td>8</td>
<td>635</td>
<td>4.0</td>
<td>92.1</td>
<td>6.8</td>
<td>7.9</td>
<td>98.2</td>
</tr>
<tr>
<td>R4t</td>
<td>0</td>
<td>3547</td>
<td>22</td>
<td>4</td>
<td>156</td>
<td>1.3</td>
<td>45.4</td>
<td>3.3</td>
<td>3.9</td>
<td>48.4</td>
</tr>
<tr>
<td>R4b</td>
<td>1</td>
<td>1960</td>
<td>20</td>
<td>4</td>
<td>137</td>
<td>1.8</td>
<td>45.4</td>
<td>3.3</td>
<td>3.9</td>
<td>48.4</td>
</tr>
<tr>
<td>R5t</td>
<td>0</td>
<td>4010</td>
<td>22</td>
<td>6</td>
<td>427</td>
<td>2.2</td>
<td>68.5</td>
<td>5.0</td>
<td>5.9</td>
<td>73.0</td>
</tr>
<tr>
<td>R5b</td>
<td>1</td>
<td>2457</td>
<td>20</td>
<td>6</td>
<td>377</td>
<td>3.0</td>
<td>68.5</td>
<td>5.0</td>
<td>5.9</td>
<td>73.0</td>
</tr>
</tbody>
</table>

a Subscripts u and t reflect unthinned and thinned pine straw raking scenarios, respectively.

losses in future productivity. Incorporation of biodiversity values in the economic analysis is also a subject of further research.

References

Dickens, E.D., Moorhead, D.J., McElvain, B.C., Curry, D.S., Edsfein, J., 2010. Effect of Fertilization on Slash Pine Growth and Pine Straw Production in an Oldfield Site in Toombs County, Georgia. Publication Series #0048R. University of Georgia, Warnell School of Forestry and Natural Resources and College of Agriculture and Environmental Sciences, Athens, Georgia. 12 pp.

Bioscience 59 (7), 593–601.

Please cite this article as: Susaeta, A.I., et al., Economical sustainability of pinestraw raking in slash pine stands in the southeastern United States, Ecol. Econ. (2012), doi:10.1016/j.ecolecon.2012.05.010